Study of Hadron Interactions and Exotic Hadrons in the ALICE Experiment at CERN LHC

Hideki Hamagaki (hamagaki_hideki@pilot.nias.ac.jp)

Institute for Innovative Science and Technology Nagasaki Institute of Applied Science (IIST@NIAS)

Menu

- Introduction
- Light nuclei and Hypernuclei
- Di-baryon and Baryon Interactions
- ALICE Upgrade during LS2 (Long Shutdown 2)
- After ALICE Upgrade
- Summary and Outlook

INTRODUCTION

2020/01/10

Exotica

- Having configuration different from baryon (qqq) & meson $(q\bar{q})$
 - No intrinsic reason why only baryons and mesons are the stable configuration

Particle	m (MeV)	<u>g</u>	Ι	J^{P}	2q/3q/6q	4q/5q/8q	Mol.	ω _{Mol.} (MeV)	Decay mode
Mesons									
$f_0(980)$	980	1	0	0+	$q\bar{q}, s\bar{s}(L=1)$	$q\bar{q}s\bar{s}$	ĒΚ	67.8(B)	$\pi\pi$ (Strong decay)
$a_0(980)$	980	3	1	0+	$q\bar{q}(L=1)$	$q\bar{q}s\bar{s}$	ĒΚ	67.8(B)	$\eta\pi$ (Strong decay)
K(1460)	1460	2	1/2	0-	$q\bar{s}$	$q\bar{q}q\bar{s}$	ĒΚΚ	69.0(R)	$K\pi\pi$ (Strong decay)
$D_s(2317)$	2317	1	0	0+	$c\overline{s}(L=1)$	$q\bar{q}c\bar{s}$	DK	273(B)	$D_s\pi$ (Strong decay)
T_{cc}^{1a}	3797	3	0	1+	_	$qq\bar{c}\bar{c}$	$\bar{D}\bar{D}^*$	476(B)	$K^{+}\pi^{-} + K^{+}\pi^{-} + \pi^{-}$
X(3872)	3872	3	0	$1^+, 2^{-c}$	$c\bar{c}(L=2)$	$q\bar{q}c\bar{c}$	$\bar{D}D^*$	3.6(B)	$J/\psi \pi \pi$ (Strong decay)
Z ⁺ (4430) ^b	4430	3	1	0 ^{-c}	_	$q\bar{q}c\bar{c}(L=1)$	$D_1 \bar{D}^*$	13.5(B)	$J/\psi\pi$ (Strong decay)
T_{cb}^{0a}	7123	1	0	0^{+}	_	$qq\bar{c}\bar{b}$	$\bar{D}B$	128(B)	$K^+\pi^- + K^+\pi^-$
Baryons									
Λ(1405)	1405	2	0	$1/2^{-}$	qqs(L=1)	$qqqs\bar{q}$	ĒΝ	20.5(R)-174(B)	$\pi \Sigma$ (Strong decay)
$\Theta^{+}(1530)^{b}$	1530	2	0	$1/2^{+c}$	_	$qqqq\bar{s}(L=1)$		_	KN (Strong decay)
$\bar{K}KN^{a}$	1920	4	1/2	$1/2^{+}$	_	$qqqs\bar{s}(L=1)$	ĒΚΝ	42(R)	$K\pi\Sigma, \pi\eta N$ (Strong decay)
$\bar{D}N^{a}$	2790	2	0	$1/2^{-}$	_	qqqqc	$\bar{D}N$	6.48(R)	$K^+\pi^-\pi^- + p$
\bar{D}^*N^a	2919	4	0	$3/2^{-}$	_	$qqqq\bar{c}(L=2)$	\bar{D}^*N	6.48(R)	$\overline{D} + N$ (Strong decay)
Θ_{cs}^{a}	2980	4	1/2	$1/2^{+}$	_	$qqqs\bar{c}(L=1)$		_	$\Lambda + K^+\pi^-$
BN^{a}	6200	2	0	$1/2^{-}$	_	$qqqq\bar{b}$	BN	25.4(R)	$K^{+}\pi^{-}\pi^{-} + \pi^{+} + p$
B^*N^a	6226	4	0	3/2-	_	$qqqq\bar{b}(L=2)$	B^*N	25.4(R)	B + N (Strong decay)
Dibaryons									
Hª	2245	1	0	0+	qqqqss		ΞN	73.2(B)	$\Lambda\Lambda$ (Strong decay)
<i>K</i> NN [▶]	2352	2	1/2	0 ^{-c}	qqqqqs(L=1)	qqqqqq sq	ĒΝΝ	20.5(T)-174(T)	ΛN (Strong decay)
ΩΩ ^a	3228	1	0	0+	SSSSSS		$\Omega\Omega$	98.8(R)	$\Lambda K^- + \Lambda K^-$
H_c^{++a}	3377	3	1	0+	qqqqsc		$\Xi_c N$	187(B)	$\Lambda K^-\pi^+\pi^+ + p$
$\bar{D}NN^{a}$	3734	2	1/2	0-		qqqqqq q c	$\bar{D}NN$	6.48(T)	$K^{+}\pi^{-} + d, K^{+}\pi^{-}\pi^{-} + p + p$
BNN ^a	7147	2	1/2	0-	_	qqqqqqqb	BNN	25.4(T)	$K^+\pi^- + d, K^+\pi^- + p + p$

ExHIC collaboration; PRC 84 (2011) 064910

2020/01/10

Studies at LHC (I)

LHCb

- $Z(4430)^{-}(c\bar{c}d\bar{u})$
 - Confirmation of the result by Belle (Phys. Rev. D 92, 112009 (2015))
- Pentaquarks (*duuc* \bar{c})
 - Recent analysis \rightarrow three states; Pc+(4312), Pc+(4440), Pc+(4457)
 - Interpretations; tightly bound pentaquark state to loosely bound molecular baryon-meson state.
 Compact
- $\chi_{c1}(3872) (c \bar{c} u \bar{u})$
 - X(3872): found in 2003 by Belle
 - hadronic molecules?
 - decay channel: J/ $\psi \pi^+ \pi$ (same as ψ (2S))

CMS

• $\chi_{c1}(3872) (c \bar{c} u \bar{u})$ in Pb+Pb

Hadronic Molecules

PLB 590 209 (2004) PRD 77 014029 (2008) PRD 100 0115029(R) (2019)

tetraquark/pentaquark

Hadrocharmonium/ adjoint charmonium PLB 666 344 (2008) PLB 671 82 (2009)

Diquark-diquark *PRD 71, 014028 (2005) PLB 662 424 (2008)*

2020/01/10

Puzzling X(3872)/ ψ (2*S*) in PbPb

- In pp: Increasing suppression of $X(3872)/\psi(2S)$ ratio with increase of event activity
- In PbPb: The $X(3872)/\psi(2S)$ yield ratio ~ 1
 - − $R_{AA}(\psi(2S)) \sim 0.1 0.15 \rightarrow R_{AA}(X3872) \sim 1 1.5$ (= not suppressed or even enhanced)
 - Please note that in $p_T > 10$ GeV/c quark or hadron coalescence is NOT likely a dominant process

Studies at LHC (II)

ALICE

- Light (anti-)Nuclei
 - d, t, ³He, ⁴He
- Hypernuclei
 - ${}^{3}_{\Lambda}H$
- Baryon interaction & dibaryon search
 - p-Λ, Λ-Λ, p-Σ, p-Ξ, p-Ω

ALICE Upgrade during LS2

- Currently, LHC has been off for 2 years; long shutdown 2 (LS2)
 - 50 kHz minimum-bias Pb+Pb collisions
- ALICE has been doing significant upgrade of the detector and data taking system, to make it possible to record all 50 kHz minimum-bias Pb+Pb collision data at Run3

• When realized, extensive studies of (exotic) hadrons, baryon interactions and di-baryon search will become possible in the ALICE experiment

LIGHT NUCLEI AND HYPERNUCLEI

2020/01/10

Hadron Production in Pb+Pb at LHC

Yields are described rather well with the statistical hadronization (thermal) model,

• Chemical freeze-out temperature, $T_{CF} \sim 155$ MeV, for $\sqrt{s_{NN}} = 2.76$ TeV Pb+Pb

 $N_A \approx g_A V (\pi T_{CF} m_A/2)^{3/2} \, exp[(A\mu_B - m_A)/T_{CF}]$

- Blast-Wave fit (with T_F = 100 115 MeV) describe simultaneously the momentum spectra of π, K, p,Λ, Ξ, Ω, d, ³He, ³_ΛH, and ⁴He in central Pb+Pb collisions
- It is not obvious why the light nuclei and ${}^3_{\Lambda}$ H follows the trend of hadron yield

Chemical Freezeout Hypothesis

- Hadron yields are fixed at a certain time in the space-time evolution of heavy ion collisions (chemical freezeout = end of inelastic scattering)
 - thermalized system complying hadrons with u, d, s quarks
 - hadron yields are determined with the few global parameters

$$ho_i = \gamma_s^{|s_i|} rac{g_i}{2\pi^2} T_{ch}^3 \left(rac{m_i}{T_{ch}}
ight)^2 K_2(m_i/T_{ch}) \left. \lambda_q^{Q_i} \right. \lambda_s^{s_i} \quad \substack{\lambda_q = \exp(\mu_q/T_{ch}), \lambda_s = \exp(\mu_s/T_{ch})}{\lambda_s = \exp(\mu_s/T_{ch})}$$

- Q_i : 1 for u and d, -1 for u and d
- s_i : 1 for s, -1 for s
- $g_i\,$: spin-isospin freedom
- m_i : particle mass

global parameters

- T_{ch} : chemical freeze-out temperature
- μ_q : light-quark chemical potential
 - : strangeness chemical potential
 - : strangeness saturation factor

Hadron Yields \rightarrow Determine Temperature (T_{cf}) and Chemical Potential (μ_{cf}) at Chemical Freezeout

 μ_s

 $\gamma_{\rm S}$

Hadron Yields and Chemical Freezeout

- Hypothesis of "Chemical Freezeout" works reasonably well to describe hadron yields for nuclear collisions in wide colliding energies.
- This property can be utilized to predict yield of specific particles

Why Thermal Model works for light nuclei yields?

• Theoretical works:

2020/01/10

- Xu, Rapp, Eur. Phys. J. A55 (2019) no.5, 68
- Vovchenko et al, arXiv:1903.10024
- Oliinychenko, Pang, Elfner, Koch, PRC 99 (2019) 044907
- An isentropic expansion of a hadron resonance gas (HRG) in partial chemical equilibrium (PCE) at T < T_{ch}
 - Mesons play a similar role as the photons during the evolution of the early universe – they drive the entropy conservation during the expansion.
 - Nuclei are kept in partial (relative) equilibrium as long as the cross sections are large from CF stage to KF stage
- Small entropy production between T_{ch} to T_{KF} ?

"Study of hadron interactions and exotic hadrons in the ALICE experiment at CERN LHC" at I

13

Hypertriton (and anti-hypertriton)

- Weakly bound state of Λ , p and n, with m = 2.991 GeV/c² and $B_{\Lambda} = 130$ keV; with rms-radius = 10.6 fm
- $-{}^{3}_{\Lambda}H \rightarrow {}^{3}He + \pi^{-} \dots 25\%$ B.R.
- $\ _{\Lambda}^{3} \mathrm{H} \rightarrow \ ^{3} \mathrm{H} + \pi^{0}$
- $$\label{eq:horizontal} \begin{split} & \begin{smallmatrix} 3 \\ \Lambda \end{smallmatrix} H \to d + p + \pi^- \\ & \begin{smallmatrix} 3 \\ \Lambda \end{smallmatrix} H \to d + n + \pi^0 \end{split}$$

B. Dönigus, Nuclear Physics A 904–905 (2013) 547c–550c Phys. Lett. B 754 (2016) 360-372

Lifetime of Hypertriton ${}^{3}_{\Lambda}$ H

- Determination of lifetime of ³_AH has been made by the several groups using the heavy lon collisions
 - Heavy-ion experiments had provided consistently a shorter lifetime than free Λ lifetime, although the error bar was not small; deviations were less than 3 sigma.
- Recent ALICE measurement (red) is the most precise determination of hypertriton lifetime
- And the lifetime is consistent with the free Λ lifetime

-ifetime (ps)

DI-BARYON AND BARYON INTERACTION

2020/01/10

Di-Baryon and Baryon Interaction

- Studies using Heavy Ion collisions is getting very popular recently
 - Pioneering works by STAR experiment at BNL RHIC
 - LHC ALICE experiment is catching up very rapidly
- Baryon interaction is the basic building block of nuclear physics
- Extended to the flavor SU(3) space
- It is very encouraging that the baryon interactions can be calculated using the lattice QCD at almost physical point

Methods of Dibaryon/Interaction Study

- Binary scattering with a fixed target
 - Only stable target can be used \rightarrow limited combination
- Measurement of Invariant mass for final products in the collisions
 - Bound state
 - Unbound resonance state with small decay width
- Two particle correlation (femtoscopy)
 - Final state interaction of two particles in the collisions
 - HBT (Hanbury Brown and Twiss) Intensity Interferometry
 - Wider variety of combinations compared to the binary scattering with a fixed target

19

Phys. Lett. B 728 (2014) 216-227

Direct Search of $\Lambda\Lambda$ and ΛN Bound State

ALICE Coll.: EPJ Web of Conferences 97,00013 (2015)

- Equilibrium thermal model
- Non-equilibrium thermal model
- Coalescence predictions ())

Current consensus: H ($\Lambda\Lambda$) is slightly unbound with mass between $\Lambda\Lambda$ and $p\Xi^{-}$

Continue study in the RUN3

2020/01/10

"Study of hadron interactions and exotic hadrons in the ALICE experiment at CERN LHC" at Hadron "

Pb-Pb \ s_{NN} = 2.76 TeV (0-80% central)

Inner limit (00% CI

dN/dy

two particle wave function

 $\Psi(\vec{k},\vec{r})$

 p_b

Two Particle Correlation $(2\pi R^2)^3 \int dr r^2 S^{\text{rel}}(r) [[\chi_Q(r)]^2$ R. Lednický, VL Lyuboshitz; Sov. J. Nucl. Phys. 35 (1982) 770–778

Static/Spherical Source:

 $S^{\rm rel}(r) \sim (\pi R^2)^{3/2} \exp\left(-\frac{r^2}{4R^2}\right)$

Asymptotic wave function:

 $\chi_Q(r) \sim \sin(Qr + \delta)/(Qr)$ $Q \cot \delta = -\frac{1}{a_0} + \frac{1}{2}r_{\text{eff}}Q^2$

2020/01/10

A Short Comment on Small System

- p+p and p+A collisions have been used in the study of baryon interaction via femtoscopy
- Behavior consistent to hydrodynamical fluid is seen in violent (high-multiplicity) p+p and p+A collisions
- Understanding the dynamics of small systems are relevant to the study of baryon interaction via femtoscopy

Higher statistics at low k* region in Run 3

2020/01/10

 $B_{\Lambda\Lambda} = \frac{1}{m_{\Lambda}d_{0}^{2}} \left(1 - \sqrt{1 + 2d_{0}f_{0}^{-1}} \right)^{2}$

0.5

2

 $B_{\Lambda\Lambda}$ (MeV)

24

p-∃⁻ Correlation

$$\begin{split} C_{\mathbf{p}-\Xi^{-}} &= \frac{1}{8} C_{\mathbf{N}-\Xi} \ (\mathbf{I}=0,\,\mathbf{S}=0) + \frac{3}{8} C_{\mathbf{N}-\Xi} \ (\mathbf{I}=0,\,\mathbf{S}=1) \\ &+ \frac{1}{8} C_{\mathbf{N}-\Xi} \ (\mathbf{I}=1,\,\mathbf{S}=0) + \frac{3}{8} C_{\mathbf{N}-\Xi} \ (\mathbf{I}=1,\,\mathbf{S}=1). \end{split}$$

2020/01/10

p-∃⁻ Correlation

- ALICE: p–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV & p-p collisions at $\sqrt{s} = 13$ TeV
- ESC 16 may be excluded
- Data with higher statistics in RUN3

U(k) in Nuclear Matter by HAL-QCD

- PNM (pure neutron matter) & SNM (symmetric nuclear matter)
- Σ is repulsive in pure neutron matter (at normal nuclear density)

STAR: $p\Omega^-$ Correlation in Au+Au

- Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV, by STAR collaboration
 - arXiv:1808.02511 [hep-ex]
- Correlation pattern depends on the collision centrality → The ratio between central to peripheral
 - K. Morita, A. Ohnishi, F. Etminan and T. Hatsuda, PRC 94, 031901(R) (2016)
- The ratio is less than 1 in k* < 40 MeV/c → Positive scattering length → Suggesting bound state of pΩ

ALICE: pΩ⁻ Correlation

- $p\Omega^{-}$ correlation in p+p collisions at $\sqrt{s} = 13$ TeV
- Compared with the two theoretical calculations: HAL-QCD (PLB 792 (2019) 284) & meson exchange (by Sekihara; PRC 98, 015205 (2018))
- More attractive than $p\Xi^-$
- Theoretical uncertainty due to ³S₁

- $p-\Sigma^0$ interaction in high-multiplicity pp collisions at $\sqrt{s} = 13 \text{ TeV}$
- $p-\Sigma^0$ correlation function is consistent with the $p-(\Lambda\gamma)$ baseline ((0.2-0.8) σ) \rightarrow indicating the presence of an overall shallow potential
- Present data cannot discriminate between the different models
- \rightarrow Two orders of magnitude larger data samples (expected from Run3&4) will provide tighter constraint to the models on the N– Σ sector

ALICE UPGRADE DURING LS2

2020/01/10

LHC Long Term Plan

- LS2: 2019 2021 May
 - Experiments upgrade phase 1
 - Injector upgrade
 - Civil engineering for HL-LHC at ATLAS, CMS
 - Magnet and cryogenics
- LS3 : 2025 2027(?)

- Experiments upgrade phase 2
- HL-LHC preparation

- Run3 : 2021Jun 2024
 - x2 p-p nominal luminosity
 - x6 Pb-Pb nominal luminosity = min.bias 50 kHz
- Run4 : 2028 HL-LHC RUN
 - x5 to x7 p-p nominal luminosity
 - x7 Pb-Pb nominal luminosity
- after
 - HE-LHC (27 TeV) and FCC at 100 TeV (~2040)

ALICE Upgrades during LS2

Purpose: Record minimum-bias Pb-Pb data at 50 kHz

- New Inner Tracking System (ITS)
 7 layers of MAPS
- New TPC Readout Chambers
 - 4-GEM detectors
- New Forward Muon Tracker (MFT)
 - vertex tracker at forward rapidity
- New trigger detectors (FIT, AD)
 centrality, event plane determination
- Upgraded read-out for TOF, TRD, MUON, ZDC, EMCal, PHOS
- Integrated Online-Offline system (O²)

Inner Tracking System (ITS)

- CMOS Monolithic Active Pixel Sensor (MAPS)
 - 7 layers full pixel detector
 (old = combination of strip, drift, and pixel)
 - Light weight with carbon structure
 - Larger area (10 m²)
 - More pseudo rapidity coverage (–1.22 < η < 1.22)
 - First layer closer to interaction point (39 mm → 22 mm)
 - New beam pipe
- Improved features
 - − Low material (1.44% \rightarrow 0.3% X₀)
 - Smaller pixel (50x425 μ m² \rightarrow 27x28 μ m²)
 - − Faster readout (1 kHz (slowest) \rightarrow 100 kHz))

TPC Upgrade

- Most important and challenging upgrade
- Traditional wire chamber system \rightarrow 4 GEM system
 - Deadtime-less reading by getting rid of Gating Grid
 - Old readout: deadtime per event = 500 μ s
 - 530k channels, 200 ns sampling ADC data
 - continuous data rate = 3.5 TB/s
 - massive online computing power required
- CNS-Tokyo & NIAS from Japan

TPC Upgrade (cont.)

- LHC will provide ~50 kHz event rate in Pb+Pb collisions after LS2
- electron drift time in TPC =100 μ s
- Overlapping events
 - 50 kHz = collision every 20 μ s

MFT (Muon Front Tracker)

- MFT: New detector in ALICE
 - 5 layer silicon pixels (ITS technology)
 - 0.4 m² area
- Add vertex capability to Muon Spectrometer
 - background rejection
 - distinguish prompt/charm-decay/bottom-decay
 - improve momentum resolution

Hiroshima group is participating this project

Data Taking Upgrade

- Triggering rare particles such as low p_T heavy flavor multiparticle decay from exotic particles in high multiplicity event is impossible
 - decreasing threshold \rightarrow trigger all garbage

- non-simple threshold type trigger → full data analysis I required (a dilemma)
- 50 kHz means always ~5 events overlapping in data for ALICE TPC
 = event-by-event data taking no longer possible
- The biggest decision for Run3 = Abandon "hardware trigger" in Pb+Pb collisions
 - TAKE ALL DATA, STORE ALL without trigger \rightarrow continuous readout
 - data compression & online analysis are key technology

Common Readout Unit (CRU)

- Common to at least "major" and "new" detectors
- Detector Control System
- Trigger and timing distribution
- Data readout & processing with O(10) faster than CPUs
 - sorting, online processing: clustering (large FPGA), tracking (commercial GPU)
- deploy ~350 for TPC (~6M CHF project)

AFTER LS2 UPGRADE

2020/01/10

Performance of Upgraded ALICE

Central Barrel: ITS + TPC + ...

	Run1+2	Run3	typical signals, physics
Minimum bias event Untriggerable rare event	~ 10 ⁹ events (recorded) ~ 0.1 nb ⁻¹	x100 statistics = 10 ¹¹ ~10 nb ⁻¹	 any kind of single particle analysis e⁺e⁻ low invariant mass anti-nuclei (/⁴He) (already visible) low-pT multi-particle decay open heavy flavor baryons: Λc, Ωc hyper-nuclei such as ³_ΛH dibaryons (muti-)hyper nuclei
Triggerable rare event	~10 ¹⁰ events (inspected) ~1 nb ⁻¹	x10 statistics = 10 ¹¹ ~10 nb ⁻¹	 high p_T jet related observables high p_T gamma, electron such as Y and maybe top-quark related?

Performance after Upgrade: Light (anti-)nuclei

- ALICE can identify measure ALL charged particles, nuclei, and charged decay daughters, as well as photons
- Nuclei, anti-nuclei up to A=4 is measured in ALICE 2.76 TeV 40M Pb+Pb data in 2011
- In Run3: x2000 statistics (100 billion events) \rightarrow ~20,000 ⁴He and 6x10⁶ ³He

Expected Counts in Run3

³ He	6,000,000
⁴ He	20,000
$^{3}\Lambda H$	300,000
${}^{4}\Lambda H$	800
${}^{4}{}_{\Lambda\Lambda}H$	34
[I] [I]	150,000
ΩΩ	3,000

- Upgrade of the ALICE Experiment: Letter Of Intent (J. Phys. G 41 (2014) 087001)
- 10¹⁰ central Pb-Pb collisions at $\sqrt{S_{NN}} = 5.5 TeV$
- Assume 8% efficiency per detected baryon

SUMMARY AND OUTLOOK

2020/01/10

Summary and Outlook

Summary

- Present status of studying light nuclei and hypernuclei
- Present status of di-baryon search and study of baryon interaction
- ALICE upgrade

Outlook

- Light nuclei and Hypernuclei
- High statistics multi-strange dibaryon data; $\Omega\Omega$, $\Xi\Omega$, $\Xi\Xi$, ...
- Extension to Heavy Flavor (not discussed in this presentation)
 - Heavy baryon yield and Baryon/Meson ratio -- di-quark condensation
 - Two particle correlations; D-D, Λ_c -D, Λ_c -N,,,
 - XYZ, ...; feasibilities are to be studied

Summary and Outlook (Cont.)

Comment on femtoscopy of baryons

- Strange-baryons make weak decay, which means the angular asymmetry in the emitted particle (pion or Kaon)
- Whether is this information useful to constrain the spin of the mother nucleus?
 - How effective is it?

BACKUP

2020/01/10

HEAVY FLAVOUR

2020/01/10

V_2 and $R_{A\!A}$ of D mesons

 Both R_{AA} and v₂ at low p_T can be fairly well described by the models which employs elastic collisions in expanding hydrodynamic medium; BAMPS elastic, MC@sHQ+EPOS2, TAMU and POWLANG HTL

$R_{AA} and v_{2} of J/\psi_{Large J/\psi v_{2} in wide p_{T} range}$

- At low p_T: Large yield at mid-rapidity due to quark coalescence
- At high p_T: R_{AA} gets smaller and rapidity dependence is smaller

- J/ψ inherits elliptic flow of charm quarks
- Additional mechanisms may work for p_T > 4 GeV/c?

Bottomonium

"Study of hadron interactions and exotic hadrons in the ALICE experiment at CERN LHC" at Hadron

Centrality (%)

Dead Cone Effect

- A universal property of all radiations: Suppression of emissions from a radiator (quark) within $\theta < m_q/E_q$
 - Gluons radiated with a small suppressed
- Jet reclustering techniques for an accurate reconstruc splitting kinematics
- Splitting initiated by charm quarks (via the D⁰) is supp at small angles compared inclusive jets

Large parton mass

Small parton mass

N. Zardoshti, 5 Nov 2019, 09:20

Strong EM Field at Initial Stage

1 1,

TB-337380

- Strong magnetic field (~10¹⁸ G) is generated in non-central heavy-ion collisions
- Heavy quarks are suited to detect the EM effect at initial stage
- dΔv1/dη slope: positive (LHC-ALICE) vs. negative (RHIC-STAR)?

"Study of hadron interactions and exotic hadrons in the ALICE experiment at CERN LHC" at Hadron Spectroscopy Cafe

0.5

-0.5

0.5

Λ_c /D Ratio in pp and Pb-Pb Collisions

- Sensitive to quark-quark correlation in baryons (and in QGP?)
- Large enhancement in pp and Pb-Pb collisions compared to those in ee and ep collisions
 - We need higher statistics for Pb+Pb collisions
- Multiplicity dependence in pp collisions is compared with Pythia
 - Default Pythia provides the ratio similar to ee and ep data
 - Pythia with color reconnection describe the data (ratio) well, while cross sections are not reproduced

Exotic *cc̄* States XYZ

 20+ new states containing cc have been discovered since 2003, which do not fit in the picture of normal charmonium

Compact tetraquark/pentaquark

Diquark-diquark PRD 71, 014028 (2005) PLB 662 424 (2008)

Hadrocharmonium/ adjoint charmonium *PLB 666 344 (2008)*

PLB 671 82 (2009)

Hadronic Molecules

PLB 590 209 (2004) PRD 77 014029 (2008) PRD 100 0115029(R) (2019)

Mixtures of exotic + conventional states

 $X = a \ket{c ar{c}} + b \ket{c ar{c} q ar{q}}^{PLB \, 578 \, 365 \, (2004)}_{PRD \, 96 \, 074014 \, (2017)}$

"Study of hadron interactions and exotic hadrons in the ALICE experiment at CERN LHC" at CMS-PAS-HIN-19-005

Puzzling X(3872)/ ψ (2*S*) in PbPb

- In pp: Increasing suppression of $X(3872)/\psi(2S)$ with increase of event activity
- In PbPb: the ratio ~ 1

- − $R_{AA}(\psi(2S)) \sim 0.1 0.15 \rightarrow R_{AA}(X3872) \sim 1 1.5$ (= not suppressed or even enhanced)
- Please note that in $p_T > 10$ GeV/c quark or hadron coalescence is NOT likely a dominant process

SMALL SYSTEM

2020/01/10

A Short Detour to Small System

- p-p and p-A collisions have also been utilized in the study of baryon interaction via femtoscopy
- Behavior consistent to hydrodynamical fluid is seen in violent p-p and p-A collisions
- Understanding the dynamics of small systems are relevant to the study of baryon interaction via femtoscopy

Spatial Correlations in Small Systems

- Two competing views on the origin of spatial correlations in small systems
 - Hydrodynamical fluid, starting from the initial geometry
 - Initial state correlations (due to color domains)

Color Domains \rightarrow Initial State Correlations

v_n in p+Au, d+Au and ³He+Au by PHENIX

 Good agreement between the experimental results and hydro calculations, which backs up the interpretation with hydro

CGC Model

MSTV Phys.Rev.Lett. 121 (2018) no.5, 052301 MSTV Phys.Lett. B788 (2019) 161-165 MSTV https://arxiv.org/abs/1901.10506

p_(GeV/c)

p_(GeV/c)

p_(GeV/c)

Particle Yield vs. $dN_{ch}/d\eta$

- Systematic trend of yield ratios as a function of charged particle multiplicity; from p+p, p+A to A+A
- Strong yield suppression of multi-strange baryons at low multiplicity, i.e. in small systems
 - could be a good probe to study the dynamics of small systems
- Trend is successfully reproduced by the hydro model with dynamical core-corona initialization by Hirano group

*Core-corona picture: P. Bozek, Acta Phys. Polon. B36, 3071 (2005), K. Werner Phys. Rev. Lett. 98, 152301 (2007)

Motivation

Dynamical core-corona initialization model

Y. Kanakubo *et al.*, arXiv:1910.10556 [nucl-th] Y. Kanakubo, *et al.*, PTEP 2018 (2018) no.12, 121D01

Try to understand complex phenomena in a **unified** way based on the consistency of description

QGP (thermally equilibrated)

Corona: Non-thermalized partons

 $\frac{\text{Current goal:}}{2020/01/10}$

oal: To reveal the detail of QGP signals in small system \rightarrow_{s} Have the same origin as ones observed in heavy-ion collisions?